Chronic fatigue syndrome in children: a cross sectional survey

M X Patel, D G Smith, T Chalder, S Wessely

Background: Chronic fatigue syndrome (CFS) in children is a controversial diagnosis with unclear aetiology, ill defined but likely increasing incidence, and debatable clinical management options. However, these children experience real and considerable suffering. Appropriate research in this clinical population is sparse and usually occurs in tertiary referral units.

Methods: Cross sectional survey of 36 children attending a GP specialist interest clinic in southeast England.

Results: Patient sociodemographics and clinical morbidity were largely comparable to the literature from tertiary referral research centres. Some prognostic indicators for adults did not readily transfer to this younger age group, although several children had a positive family psychiatric history. Receiving treatment was associated with increased school attendance, but one third of subjects obtained no qualifications. Return to normal health or significant overall improvement was reported by 29/36 subjects.

Conclusions: The outcomes in this setting are favourable and comparable to those seen in a controlled setting; this study supports the concept that the prognosis for CFS in children and adolescents is generally good. However, the impact of the illness is significant and this is perhaps most evident in terms of education. Current methods of reporting educational outcomes in the literature are varied and merit development of standardised tools.

The definition of chronic fatigue syndrome (CFS) in children is usually taken to be the same as that for adults, although the criterion of a six month duration is considered by some as too long for children. Prolonged school absenteeism is also occasionally included in the definition as a proxy measure for functional impairment and severity. Epidemiological studies for CFS in children are sparse, although in the Netherlands, the prevalence in teenagers has been reported as 10–20 per 100 000 inhabitants. In Australia, eight of 42 CFS cases were found to be under the age of 15. More recently, in a community survey of nearly 4000 children in the USA, 2% were found to have had CFS-like illness. Existing epidemiological data for children in Great Britain is mainly founded on small scale studies, and thus it has been concluded that the exact dimensions of the problem remain unclear.

In CFS, symptom occurrence in children is similar to that seen in adults, and most commonly includes: muscle ache, sore throat, headache, abdominal pain, increased somnolence, concentration difficulties, and depression. Most children with CFS also display an impaired school performance and a decrease in social activities. However, children seemingly differ from adults with earlier presentation and a more optimistic outcome. In a systematic review, four studies on children with CFS showed that 54–94% of children recovered. In this age group, good prognostic indicators include specific physical triggers to the illness, start of illness in the autumn school term, and higher socioeconomic status. Alternatively, important factors in the persistence of fatigue include somatic attributions or attributions to biological processes, as well as illness enhancing cognitions and behaviour of parents as well as physical inactivity.

Children with CFS have been successfully treated in secondary and tertiary referral units. The literature suggests that these children should be treated with a multifactorial approach; this usually includes a graded behavioural programme, with an additional graded approach for return to school, which is sometimes combined with family therapy. Attention should be paid to psychosocial factors, working with the family to encourage more activity, decreasing attention to somatic complaints, and reducing illness behaviour. Disruption to education, social, recreational, and peer group integration should be minimised. The use of antidepressants in children has been advocated, where depression is a significant feature (as often seen in CFS), based on evidence provided.

Unfortunately, CFS in children has received much adverse publicity. The very essence of diagnosis and the clinical labelling of such children has been questioned. Even effective management options have been ridiculed. However, there has been recent widespread concern about an apparent increase in CFS in children. The impact of this illness is profound as one survey suggested that CFS is responsible for 50% of long term absences from school. There is also the frequently repeated assertion that the mean length of illness in childhood is approximately five years. It is against this undesirable backdrop that we detail a cross sectional study reporting on degree of disability and symptomatology in a GP specialist interest clinic for CFS. Further, prognostic indicators in children with CFS are considered.

METHODS

Design

Using a cross sectional design, all eligible patients were sent a battery of standardised questionnaires by post. Further data were later obtained from the clinical notes and a follow up telephone call.

Abbreviations: CFS, chronic fatigue syndrome; GHS, General Health Questionnaire; GP, general practitioner; HAD, Hospital Anxiety and Depression scale
Clinic description
DGS runs a general practitioner (GP) specialist interest clinic in chronic fatigue syndrome for assessment and treatment of patients of all ages in southeast England. On average, he sees one hundred new National Health Service patients per year. Two thirds of these patients reside in the areas of Sussex, Kent, East London, and Essex. The majority are referred directly by the patient’s GP and approximately one third of patients are referred directly by consultants. No referred patients are too ill to travel to the clinic and none are private referrals.

Initial assessment clinical interviews, including screening for anxiety and depression, are followed by a standard battery of clinical investigations. Treatment entails engagement, education, and medication (antidepressants of low to average dose). Further psychological aspects of treatment, which primarily involve an individualised modified activity programme for both mental and physical activity, address the following factors:

- Discussion regarding stressors
- Normalisation of sleep pattern (sleep hygiene)
- Structured graduated daytime activity programme with self identified goals
- Graduated stepwise reintroduction to previous main daytime activity (for example, schooling)
- Development of non-maladaptive coping strategies for anxiety.

For the first 6–9 months, patients are reviewed on a monthly basis followed by two-monthly appointments. The average length of treatment duration is two and a half to three years.

Subjects
All children aged 18 or less, who were patients currently receiving treatment in summer 1998 or who had completed treatment in the previous 12 months were included in this study. The only exclusion criterion was a primary diagnosis other than chronic fatigue syndrome.

Measures
The battery of standardised questionnaires included the following outcome measures:

- Fatigue Questionnaire. Twelve items are scored on a four-option continuum from “less than usual” to “much more than usual”. Ratings are coded using a bimodal method, with caseness being defined as a minimum score of 4 (range 0–11).
- General Health Questionnaire (GHQ), 12 item. Twelve depression and anxiety items are rated on the same four options as used in the fatigue questionnaire. Ratings are coded using a bimodal method with a cut off of 4 indicating psychological caseness (range 0–12).
- Social adjustment scale. Impairment in work, home management, social activities, and private leisure are rated on scales from 0 (no impairment) to 8 (maximal impairment). The subscales of work and home management were adapted to school and home life measures, deemed more suitable for children. Scores were summated to give a total score of function of “work” and social ability.
- Hospital Anxiety and Depression scale (HAD). Fourteen depression and anxiety items are rated on by three individual options per item relating to severity of the symptom. Subscale scores are calculated for depression and anxiety respectively (subscale ranges 0–17 each). Subscale scores greater than 11 are defined as reaching caseness.
- Fear questionnaire. Twenty items are rated on scales from 0 (no avoidance) to 8 (total avoidance). Scores are calculated for five-item subscales of agoraphobia, blood, social, and dysphoria (subscale ranges 0–40 each) as well as a total aggregate score (range 0–100).
- Symptom checklist. Forty common symptom items scored as being present or not present within the previous week. An aggregate total score of all the affirmative answers is calculated (range 0–40).
- Attribution scale. Nine attribution items scored as “not a factor”, “might be a factor”, or “definitely a factor” and are coded individually.
- Patient satisfaction. Sixteen items concerning satisfaction with various aspects of treatment, including the clinician-patient relationship, are scored as occurring or not occurring, and also on a five-point Likert scale for degree of usefulness. Items are coded on an individual item basis.
- Global outcome measure. Five items measuring global improvement, satisfaction with treatment outcome, degree of handicap (restriction), improvement in fatigue, and usefulness of treatment are measured with the first four factors on a seven-point scale and the latter on a five-point Likert scale with individual options per item. Low scores indicate significant improvement. Ratings are collapsed into dichotomous categories with scores of 1–3 (representing significant improvement/usefulness/satisfaction), and scores of 3 or more (representing deterioration/uselessness/dissatisfaction).

Additionally, questions on demographic data, school attendance, benefits, and alcohol intake were included.

Procedure
Subjects were identified by the clinic database and were sent the battery of standardised questionnaires by post. Patient consent was taken as implicit on return of completed questionnaires. Further data were obtained from the clinical notes including diagnosis, medication used, and duration of treatment. Eighteen months later, a follow up telephone call was made to further identify educational outcome data, for example, number of GCSEs achieved.

Data were analysed using SPSS software.

RESULTS
Sociodemographic data
Thirty six of 40 children and their parents responded to our questionnaires (90%). Table 1 shows the sociodemographic details.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Sociodemographic details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>25</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>White/British</td>
<td>35</td>
</tr>
<tr>
<td>White/European</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
</tr>
<tr>
<td>Standard occupational classification of parents</td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td>2</td>
</tr>
<tr>
<td>Level 2</td>
<td>7</td>
</tr>
<tr>
<td>Level 3</td>
<td>15</td>
</tr>
<tr>
<td>Level 4</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>15.92</td>
</tr>
<tr>
<td>SD</td>
<td>11–18</td>
</tr>
<tr>
<td>Range</td>
<td>3–77</td>
</tr>
<tr>
<td></td>
<td>4–76</td>
</tr>
</tbody>
</table>

Occupations are classified in terms of their skill as defined by the nature and duration of the qualifications, training, and work experience required for competency in tasks of a particular job. Level 4 relates to professional occupations and managerial positions; level 3 includes technical occupations and a variety of trade occupations; level 2 includes machine operation, caring, and clerical occupations; level 1 includes cleaners, porters, and catering assistants.
Clinical morbidity

At the time of this cross sectional survey, 12 children (33.3%) reported fatigue lasting less than six months, and nine children (25%) reported fatigue of six months or more, with 15 children (41.7%) not reporting duration of fatigue. Table 2 details the findings for the main measures of fatigue, GHQ, social adjustment, HAD scale, and fear. Co-morbid syndromes of anxiety (n = 11, 30.6%), stress related (n = 6, 16.7%), social phobia (n = 2, 5.6%), depression (n = 1, 2.8%), and physical disease (n = 3, 8.3%) were detected, with 15 children (41.7%) being free of co-morbid syndromes.

Symptom checklist

The most commonly reported symptoms were: headaches (n = 28, 77.8%), daytime drowsiness (n = 22, 61.1%), sore throat (n = 17, 47.2%), eye strain (n = 17, 47.2%), stomach pain (n = 15, 41.7%), dry mouth (n = 14, 38.9%), back pain (n = 14, 38.9%), joint pain (n = 14, 38.9%), muscle pain (n = 14, 38.9%), and stiffness in limbs (n = 12, 33.3%).

Prognostic indicators

Five (13.9%) children had a positive family history of chronic fatigue syndrome in a first degree relative. Nine (25.0%) had a positive psychiatric family history in a first degree relative: five parents, two siblings, and two (of the same family) were all first degree family members. Only four (11.1%) of the children received benefits, and only six (16.7%) belonged to a self-help group. Of the 14 (38.9%) who indicated that they drank alcohol, seven were drinking normal amounts, four had reduced their intake, and three were abstaining.

Attribution scale

Twenty two (61.1%) felt that a viral onset was definitely a factor, and a further 10 (27.8%) said that it might be a factor. Four (11.1%) considered a current or ongoing infection was definitely a factor, with a further nine (25.0%) thinking that it might be a factor. Only two (5.6%) thought that food or other allergies were definitely the cause. In terms of psychological attributions, 13 (36.1%) indicated that emotional upset was definitely a factor and 14 (38.8%) thought that it might be a factor. Twelve (33.3%) highlighted that school stresses were definitely a factor and eight (22.2%) believed that the stress of relationships was definitely involved.

Treatment

Thirty four of 36 children (94.4%) were prescribed at least one antidepressant, of which eight received a tricyclic antidepressant only and 26 received both a tricyclic antidepressant and a selective serotonin reuptake inhibitor. Thirty one (86.1%) of the children and their families felt that they could tolerate the medication and 30 of them (83.3%) believed that it helped them. Twenty nine (80.6%) thought that the modified activity programme for mental activity was useful and 27 (75.0%) believed that the modified activity programme for physical activity was useful.

Patient satisfaction scale

Highest scoring items included “having my illness taken seriously” (97.2%), “changing how I manage the illness” (94.4%), “getting support and encouragement” (94.4%), “learning greater control over my symptoms” (86.1%), and “adopting a step by step approach” (86.1%). However, only 16 children (44.4%) felt that they had a one-to-one relationship with their doctor.

Outcomes

Global outcome measure

For this measure, lower scores indicate good results (see table 3).

Education

In the week prior to first presentation at the clinic, the mean percentage of time spent at school was 29.9% (SD 33.9%, range 0–100%). Fourteen children (43.8%) informed us that they had not attended school at all in the week prior to presentation and only 12 (37.5%) stated that they had attended for more than 50% of the full school week. Sixteen children and their families applied for home tuition, of which 13 received some. Worrying about returning to school was highlighted by 26 (72.2%) children, and 22 (61.1%) felt that their school had been supportive.

At the time of the survey, 32 of 36 of the children (88.9%) were registered for full time education, of which 28 (77.8%)
DISCUSSION

This study was conducted in a GP specialist interest clinic in southeast England, and therefore differs from most other studies which report findings from tertiary centres. With a sample size of 36 children aged 11–18 years, this study is large in comparison to most in the current literature.

Sociodemographic factors and the extent of general morbidity and functioning in the clinic were predominantly similar to those found in adults, as several common adult prognostic factors occur less frequently in children. However, a familial influence was seen in five subjects and others had a positive family psychiatric history. Furthermore, we found a high attribution to viral onset and lower attribution to psychological processes.

Overall the subjects found the treatment to be useful and were satisfied with it. However, it is of concern that over half of the children felt that they did not have a one-to-one relationship with their doctor and this is perhaps indicative of the presence of parents during all clinical appointments. While this is understandable, it may adversely impact on perceived patient autonomy for the adolescent.

Subjects also indicated that they were much better than they were before treatment as overall improvement or return to normal health was reported by 29/36 (80.6%) subjects and no change or worsening health was reported by the remaining seven (19.4%). These findings are favourably comparable to those reported in the literature (see Table 4). In general, outcome for children with CFS is favourable, and several children resume normal activities.

Notably, school attendance prior to treatment was low and nearly half the children were not attending school at all. These findings are worse than those previously reported. One of the main difficulties here is that there is a lack of consistency across the literature in style and time parameters used for reporting school attendance and academic outcomes. In our study, home tutelage was received by 13 children; this is understandable, it may adversely impact on perceived patient autonomy for the adolescent.

Table 3 Outcome measures

<table>
<thead>
<tr>
<th></th>
<th>Very or much better</th>
<th>Little, same, or worse</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>29 (80.6%)</td>
<td>7 (19.4%)</td>
<td>1.78 (1.34)</td>
<td>1–7</td>
</tr>
<tr>
<td>Fatigue</td>
<td>28 (77.8%)</td>
<td>8 (22.2%)</td>
<td>2.03 (1.14)</td>
<td>1–6</td>
</tr>
<tr>
<td>Handicap (restriction)</td>
<td>28 (77.8%)</td>
<td>8 (22.2%)</td>
<td>1.82 (1.09)</td>
<td>1–6</td>
</tr>
</tbody>
</table>

Table 4 Reported global improvement outcomes

<table>
<thead>
<tr>
<th></th>
<th>Normal or improvement</th>
<th>No change or worse</th>
<th>Follow up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krilov et al [1998]</td>
<td>40/42 (95.2%)</td>
<td>2/42 (4.8%)</td>
<td>Range 1–4 years</td>
</tr>
<tr>
<td>Feder et al [1994]</td>
<td>45/48 (93.8%)</td>
<td>3/48 (6.2%)</td>
<td>Mean 3.8 years</td>
</tr>
<tr>
<td>Chalder et al [2002]</td>
<td>15/18 (83.3%)</td>
<td>3/18 (16.7%)</td>
<td>Mean 6 months</td>
</tr>
<tr>
<td>Bell et al [2001]</td>
<td>28/35 (80.0%)</td>
<td>7/35 (20.0%)</td>
<td>Average 13 years</td>
</tr>
<tr>
<td>Carter et al [1995]</td>
<td>24/31 (77.4%)</td>
<td>2/31 (6.5%)</td>
<td>Median 6 months</td>
</tr>
<tr>
<td>Marshall et al [1999]</td>
<td>13/17 (76.5%)</td>
<td>2/17 (11.8%)</td>
<td>Median 26 months</td>
</tr>
<tr>
<td>Garralda et al [1999]</td>
<td>17/25 (68.0%)</td>
<td>8/25 (32.0%)</td>
<td>Mean 45.5 months</td>
</tr>
<tr>
<td>Smith et al [1991]</td>
<td>8/15 (53.3%)</td>
<td>7/15 (46.7%)</td>
<td>Mean 18.4 months</td>
</tr>
</tbody>
</table>

At the follow up telephone call GCSE results were discussed (pass grades A–E). The median number of passes was 3 (range 0–10). Sixteen (44.4%) achieved five or more passes and a further nine children (25%) achieved 1–4 passes, although not all of these were at a single sitting. Unfortunately, 11 children (30.6%) did not achieve any passes or did not even sit for their examinations. Twenty (55.6%) remained in full time education and five (13.9%) were in part time employment. Three (8.3%) of these were at a single sitting. Unfortunately, 11 children (30.6%) did not achieve any passes or did not even sit for their examinations. Twenty (55.6%) remained in full time education and five (13.9%) were in part time employment. Three (8.3%) of these were at a single sitting. Unfortunately, 11 children (30.6%) did not achieve any passes or did not even sit for their examinations. Twenty (55.6%) remained in full time education and five (13.9%) were in part time employment.
Conclusion
This study shows that in children and adolescents with CFS, patient characteristics in a GP specialist interest clinic setting are comparable to those seen in the more controlled setting of a tertiary referral research unit. Similarly, treatment methods used can be transferred into the real world with largely favourable outcomes, which are again comparable to the controlled setting. While there is clearly a need for better, more focused multidisciplinary rehabilitation, this study suggests a far more favourable prognosis for CFS than some of the popular literature. Given that the poor prognostic speculation can become a self-fulfilling prophecy by increasing helplessness, avoidance, and depression, we feel it is important to bring this more favourable prognosis to light.

In our study the most striking finding was perhaps that less than half of the children were attending school in the week prior to presentation in the clinic. The possible impact of treatment on school attendance was favourable but still with varying degrees of time spent in school. Comparison with the literature was in general only possible with smaller scale studies and the method of recording data on education varied considerably. In real life, the outcome of education is generally seen as the degree of success at national examinations (GCSEs) and entry to further education. These are rarely reported in the clinical literature. It is therefore suggested that consistency be obtained by development of standardised scales for school attendance and educational outcomes. Only then can the true impact of CFS on education be properly examined.

The main criticism of this study is that it used a cross sectional design and therefore relied on the responses to questionnaires as certain parameters were not detailed at first. In our study the most striking finding was perhaps that less than half of the children were attending school in the week prior to presentation in the clinic. The possible impact of treatment on school attendance was favourable but still with varying degrees of time spent in school. Comparison with the literature was in general only possible with smaller scale studies and the method of recording data on education varied considerably. In real life, the outcome of education is generally seen as the degree of success at national examinations (GCSEs) and entry to further education. These are rarely reported in the clinical literature. It is therefore suggested that consistency be obtained by development of standardised scales for school attendance and educational outcomes. Only then can the true impact of CFS on education be properly examined.

The main criticism of this study is that it used a cross sectional design and therefore relied on the responses to questionnaires as certain parameters were not detailed at first presentation. Despite this, this study supports the existing evidence that the prognosis for CFS in children and adolescents is generally good. However, the impact of the illness is significant, and this is perhaps most evident in terms of education.

ACKNOWLEDGEMENTS
Grateful thanks are extended to all participants and their families, Isama Smith for her administrative skills, Lakshika Tennakoon and Sophia Rabe-Hesketh for assistance with statistical analysis, Carinne Pariente and Paola Dazzan for their guidance, and particular thanks to David Anderson.

Authors’ affiliations
M X Patel, T Chalder, S Wessely, Institute of Psychiatry and GKT School of Medicine, De Crespigny Park, London SE5 8AF, UK
D G Smith, Malagay Barn, Church Road, West Tilbury Village, Essex RM18 8TU, UK

REFERENCES
26 Colby J. Study finds 12000 pupils may be suffering from ME. Sunday Times 5 June 1994.
Chronic fatigue syndrome in children: a cross sectional survey
M X Patel, D G Smith, T Chalder, et al.
Arch Dis Child 2003 88: 894-898
doi: 10.1136/adc.88.10.894

Updated information and services can be found at:
http://adc.bmj.com/content/88/10/894.full.html

These include:
References
This article cites 31 articles, 12 of which can be accessed free at:
http://adc.bmj.com/content/88/10/894.full.html#ref-list-1

Article cited in:
http://adc.bmj.com/content/88/10/894.full.html#related-urls

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Child and adolescent psychiatry (paediatrics) (365 articles)
Drugs: CNS (not psychiatric) (298 articles)
Neuromuscular disease (101 articles)
Rheumatology (286 articles)
Epidemiologic studies (920 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/